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INTRODUCTION

Humans survive in environments that contain a vast quantity and variety of visual
information. All items of perceived visual information must be represented within a
limited number of brain networks. The human brain requires mechanisms for selecting
only a relevant fraction of perceived information for more in-depth processing, where
neural representations of that information may be actively maintained and utilized for
goal-directed behavior. Object-based attention is crucial for goal-directed behavior and yet
remains poorly understood. Thus, in the study we investigate how neural representations
of visual object information are guided by selective attention. The magnitude of activation
in human extrastriate cortex has been shown to be modulated by attention; however,
object-based attention is not likely to be fully explained by a localized gain mechanism.
Thus, we measured information coded in spatially distributed patterns of brain activity
with fMRI while human participants performed a task requiring selective processing of a
relevant visual object category that differed across conditions. Using pattern classification
and spatial correlation techniques, we found that the direction of selective attention is
implemented as a shift in the tuning of object-based information representations within
extrastriate cortex. In contrast, we found that representations within lateral prefrontal
cortex (PFC) coded for the attention condition rather than the concrete representations of
object category. In sum, our findings are consistent with a model of object-based selective
attention in which representations coded within extrastriate cortex are tuned to favor
the representation of goal-relevant information, guided by more abstract representations
within lateral PFC.

Keywords: selective attention, visual attention, prefrontal cortex, visual objects, pattern analysis, functional MRI,
working memory

neural mechanisms mediate selective attention to relevant visual

Humans survive in environments that contain a vast quantity
and variety of visual information. Much more information enters
the nervous system than may be useful or within our capacity
to process. To guide behavior based on one’s goals or intentions
(referred to as top-down processes), we must selectively process
only what is relevant and ignore what is not relevant. However,
information in the visual world may be parsed as relevant or
non-relevant based on any number of different possible divisions.
Relevant visual information may be determined by properties
such as a particular spatial location or a specific object. The
same location or object in our visual world may differ in its
relevance depending on the context of the situation. For exam-
ple, in one moment, a tourist may be interested in learning the
faces of fellow tour members. Later she may be more interested
in identifying scenic views for photo-taking opportunities. What

information?

In this study, we focus on identifying the neural mecha-
nisms underlying object-based selective attention. Several models
regarding how the object category of perceived visual informa-
tion is represented in the brain have been proposed, and these
models for object perception provide possible foundations for
investigating mechanisms by which attention guides information
processing. One model proposes that visual objects are encoded in
a modular architecture within visual cortex, with a limited num-
ber of identifiable regions that show differential response mag-
nitudes to viewing of objects of different categories (Kanwisher
et al., 1997; Aguirre et al., 1998; Epstein and Kanwisher, 1998;
Downing et al., 2006). An alternative model proposes that object
categories are encoded in visual cortex in widely distributed and
spatially overlapping representations (Haxby et al., 2001; Hanson
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The procedure was repeated for 10 cycles (connection weights
were initialized to random values for each cycle), and the average
output was taken as a more precise estimate than single cycles.

Classification of attention condition

We first tested whether information that distinguishes attention
conditions is present in extrastriate cortex and PFC by determin-
ing whether patterns from different attention conditions were
distinguishable by the MLP. Classification accuracy was com-
pared against rates when the condition samples were scrambled
(on average occurring at chance, 33%). This simply confirmed
that information relevant to attention condition was encoded in
the evaluated activity patterns, and that the MLP could detect
this information content and use it to discriminate activity
patterns.

Determination of the distinctiveness of activity patterns

Determination of the distinctiveness of activity patterns of
primary interest were measurements informative of the distinc-
tiveness of activity patterns between the different attention con-
ditions. One method is to calculate the rate at which patterns
from a given attention condition are mis-classified as another by
a pattern classifier (see Figure 3). Distinctiveness of two patterns
is reflected in how likely the classifier is to classify two patterns
as representing the same information, in this case, attention con-
dition. In particular, the relative rates at which two patterns are
mis-classified as one another reflects how distinctive the patterns
are. This application differs from the more common usage of pat-
tern classification methods, where the existence of information
within the tested patterns is tested by classification rates above
chance, rather than how distinctive different patterns are from
each other. The lower the distinctiveness between two patterns,

the more likely the pattern classifier will mis-classify one pattern
as the other. The higher the distinctiveness between two patterns,
the less likely the pattern classifier is to mis-classify one pattern as
the other. Related concepts have been described as “confusability”
(of patterns or information) (O’Toole et al., 2005) or “similarity”
(Norman et al., 2006).

After the MLP was trained to recognize patterns associated
with each attention condition, test sample patterns were provided
as inputs to the MLP. When multi-voxel patterns from each atten-
tion condition are entered as test samples, the classifier either
correctly guesses the attention condition or mis-classifies the pat-
tern as one of the other conditions (see Figure 3). The rates at
which the patterns were mis-classified as either of the other two
conditions were quantified (outputs at right side of Figure 3).

Hypothesis testing using indices of distinctiveness

If selectively directing attention to one or the other category
biases visual cortex patterns to favor the representation of the
one that is goal-relevant, this should result different patterns of
mis-classification rates in the two selective attention conditions,
relative to the non-selective attention condition. Thus, patterns
for opposing attention conditions (e.g., faces vs. scenes) would
be relatively more distinctive from each other (Figure 1B vs. 1C)
than from the intermediate non-selective condition (e.g., Attend
Both; Figure 1A vs. 1B or 1A vs. 1C). Chi-Square tests were used
to test for potential differences in classification assignments across
the three attention conditions. In particular, we tested for dif-
ferences in mis-classification rates for each pair of conditions,
e.g., Faces mis-classified as Scenes vs. Faces mis-classified as Both.
Comparisons were conducted in the PFC and extrastriate cortex,
and to address the issue of multiple comparisons, we adjusted
our statistical threshold of p < 0.05 to reflect the 13 comparisons

perceptron.

FIGURE 3 | Method for determining the distinctiveness of activity patterns for each attention condition using mis-classification rates of a multi-layer
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conducted (for 12 PFC masks and one extrastriate cortex mask),
resulting in a corrected threshold of p < 0.004.

Exclusion of global differences in activation between attention
conditions

In order to conclude that selective attention modulates spatially
distributed activity patterns it is necessary to exclude the pos-
sibility that these activity patterns differ simply due to global
differences in magnitude of activation. We therefore tested visual
cortex activity patterns after specifically excluding the potential
contributions of global signal intensity differences across con-
ditions by normalizing signal intensities across attention condi-
tions. Thus, we calculated z-scores for each blocked condition and
each anatomical mask by normalizing every voxel signal intensity
by the mean and standard deviation of signal intensities for all the
voxels in each mask for each block. We performed pattern classifi-
cation analyses in both the PFC and extrastriate cortex using these
z-scored data following the same procedures described above.

Exclusion of category-selective extrastriate cortex regions

We also determined to what extent attentional modulation of
extrastriate cortex was driven by information carried by local-
ized object “category-selective” regions (Kanwisher et al., 1997;
Epstein and Kanwisher, 1998; Downing et al., 2006) as compared
to spatially, distributed regions. Based on prior findings from a
localization-based ROI approach (e.g., Gazzaley et al., 2005a,b),
it might be the case that attention alters information codes sim-
ply by modifying regions with the highest category-selectivity. In
order to test for this possibility, we first calculated the object selec-
tivity of voxels (i.e., differential activation to viewing of faces vs.
scenes), following procedures as previously published (Gazzaley
et al., 2005a,b). Subjects performed an independent block design
1-back matching task involving presentations of blocks (16s) of
scene stimuli alternating with blocks of face stimuli. Contrasts
of the faces and scenes blocks were calculated and the resulting
t-statistics were used as an index of category selectivity. This anal-
ysis led to the identification of localized category-selective regions
corresponding to the “parahippocampal place area” (PPA) and
“fusiform face area” (FFA). These regions were individually func-
tionally defined as the top seven voxels showing the greatest
selectivity in responses for faces or scenes (corresponding to the
FFA and PPA, respectively). These regions were then excluded
from the pattern classification analyses, and the classification
procedures were repeated.

A second approach we implemented for investigating the
extent attentional modulation of extrastriate cortex is driven by
localized object “category-selective” regions was to stratify extras-
triate cortex voxels based on their degree of category selectivity.
Thus, extrastriate cortex voxels were sorted into 10th percentile
strata based on the degree of differential activation for faces and
scenes (stratified from “most selective” to “least selective” based
on t-value in the contrast of faces vs. scenes). The “FFA” and
“PPA” ROIs described above contained voxels from the most
selective bin. Pattern classification was performed when each 10th
percentile stratum were excluded, thereby testing the contribution
of each stratum to the measured information representations. The
resulting classifier accuracy rates were tested by repeated measures

ANOVA, with one factor (strata) with 10 levels. Follow-up anal-
ysis of significance was based on dependent sample t tests of
accuracy rates for pairs of strata.

Spatial correlations

We confirmed that the results from the pattern classifier method-
ology were valid across methods by also determining the distinc-
tiveness of activity patterns based on measurement of the corre-
lations of distributed spatial patterns. Correlational analyses of
spatial patterns provide methods for determining the relative dis-
tinctiveness of patterns, where a lower correlation reflects greater
distinctiveness. This method is sensitive primarily to changes
in variations across space (i.e., patterns), and are insensitive to
widespread, spatially uniform “activation” differences across con-
ditions or, conversely, changes that are only highly localized and
do not change the relationships between voxels. Regressors that
modeled the stimulus presentation period were included in a
general linear model, and beta values for the contrast of image
presentation periods minus inter-trial fixation periods were cal-
culated for each voxel in the respective anatomical mask resulting
in a multi-voxel matrix of post-stimulus activation. These matri-
ces were translated into a linear vector (Aguirre, 2007) for each
attention condition, and correlations between each pair of condi-
tions were tested using a non-parametric test [Kendall rank order
correlation (tau)]. The statistical significance of the differences
between resulting t (tau) was assessed using dependent sample
T-test, with an a priori threshold of p < 0.05 for significance,
Bonferroni corrected for three comparisons yielding a threshold
of p = 0.016.

RESULTS

BEHAVIORAL RESULTS

When participants were asked to rate familiarity of images in an
unexpected recognition task after the scanning session, familiar-
ity was significantly higher for attended images in the selective
conditions (Attend Faces; Attend Scenes) than for non-attended
images (p < 0.0001). Familiarity for images from the Attend Both
condition was intermediate, less than for attended (p < 0.05) and
greater than for non-attended images (p < 0.001) in the selective
conditions.

IMAGING RESULTS

Extrastriate cortex

Confirmation of information encoding. Classification of extras-
triate cortex activity patterns as corresponding to one of the
attentional conditions was accurate significantly above chance
(overall accuracy 57%, p < 0.01 compared to 33% for scram-
bled). This confirmed that information regarding the attention
condition (target of attention) is encoded in the interrogated
activity patterns.

Determination of distinctiveness between activity patterns
with a pattern classifier analysis. Testing our main hypothe-
ses required determining the relative distinctiveness of activ-
ity patterns between attention conditions. We calculated rates
for which activity patterns from each given attention condi-
tion was classified as representing each of the other conditions.
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Lower rates of mis-classification as a particular condition reflect
that the particular pair of patterns is more distinctive (less
likely to be confused). We found that the classifier was more
likely to mis-classify samples from the Attend Scenes condition
as being from the Attend Both than the Attend Faces condi-
tion (¥2(1, N = 20) = 46.2, p < 0.001, Figure 4A). Likewise, the
classifier was more likely to mis-classify samples from the Attend
Faces condition as being from Attend Both than the Attend Scenes
condition (x2(1, N =20) = 21.73, p < 0.001, Figure4A). In
other words, patterns from the opposing selective attention con-
ditions (e.g., attend face or attend scene) were more distinctive
from each other than from the non-selective condition (e.g.,
attend both).

Control for “global” activation differences between attention
conditions. To exclude the possibility that the activity patterns
for different attention conditions simply differed because of
global activation magnitude differences between the conditions,
we normalized regional mean signal intensities across attention
conditions and repeated the pattern classifier analyses. We found
that the pattern of results did not change. The classifier was more
likely to mis-classify samples from the Attend Scenes condition
as being from the Attend Both than the Attend Faces condition
(x2(1, N = 20) = 88.36, p < 0.001). Similarly, the classifier was
more likely to mis-classify samples from the Attend Faces con-
dition as being from the Attend Both than the Attend Scenes
condition (x?(1, N = 20) = 27.81,p < 0.001). This suggests that

the findings reflect changes in multi-voxel, spatially varying activ-
ity patterns and not generalized differences in activation levels
between attention conditions.

Determination of distinctiveness between activity patterns with
a spatial correlation analysis. Spatial correlations were calcu-
lated as an alternative method for estimating activity pattern
distinctiveness between attention conditions. Consistent with the
pattern classification findings, spatial correlations between the
two selective attention conditions (Attend Faces-to-Attend Scenes
v =0.77) were lower (p < 0.01) than the correlations between
each selective attention condition and the non-selective atten-
tion condition (t = 0.79 for Attend Faces-to-Attend Both and
Scenes-to-Attend Both).

Exclusion of category-selective extrastriate cortex regions. In
order to determine the contributions of regions corresponding
to the “FFA” and “PPA” to the primary findings, we excluded
these regions (as described in “Methods”) from the pattern
classification analyses. This exclusion resulted in only a small
decrement in the classification of attention condition (0.7%),
suggesting that top-down attentional signals act on spatially dis-
tributed representations beyond these localized category-specific
regions.

We also divided voxels from the whole extrastriate cortex
mask into 10 percentile strata based on differential univariate
responses to viewing of faces or scenes during the performance of
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an independent face and scene “localizer” task (see “Methods”).
Next, we performed pattern classification with exclusion of single
strata to determine the sensitivity of the pattern classification to
the information encoded in each stratum. We found that classi-
fication rates remained significantly above chance regardless of
which stratum was excluded (range 54-57%). A slightly larger
decrement in classification accuracy was observed when the top
most selective stratum was excluded. There was no linear rela-
tionship between category-selectivity and the classification rates.
(See Figure 5).

Next, we determined pattern classification accuracy when
using data limited to each specific stratum (excluding data from
the other nine strata). Classification accuracy was significantly
above chance in all strata, including the strata with the lowest
category-selectivity. The range of classification accuracy rates was
47-54%. The strata with the highest category selectivity showed a
small but significantly higher classification accuracy (54%, com-
pared to 49% for the next stratum, p < 0.05, with no significant
differences in the remaining strata).

Lateral prefrontal cortex

Confirmation of information encoding. Classification of PFC
activity patterns as corresponding to one of the attentional con-
ditions was accurate significantly above chance in all PFC ROIs
(dorsolateral PFC—overall accuracy 51% for both left and right,
p < 0.01 compared to 33% for scrambled; ventrolateral PFC—
48% and 49%, left and right, respectively, each p < 0.01 com-
pared to 33% for scrambled; frontal polar ROI, 49% and 46%,
each p < 0.01 compared to 33% for scrambled) This confirmed
that information regarding the attention condition (target of
attention) is encoded in the interrogated activity patterns.

Determination of distinctiveness between activity patterns with
a pattern classifier and spatial correlation analysis. The rel-
ative distinctiveness between activity patterns was determined
as described above. When samples from each selective attention
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FIGURE 5 | Attention condition classification rates (% accuracy) after

exclusion of each “object-selectivity” stratum. (Dotted line demarcates
chance rate of classification).

condition were entered as test patterns, mis-classification as the
other two conditions did not differ significantly for either con-
dition in any lateral PFC ROI. Results from the DLPFC ROI are
presented in Figure 4B. Thus, although the PFC activity patterns
from the three attention conditions were distinguishable from the
scrambled image condition, there was no difference in the rel-
ative distinctiveness of the selective and non-selective attention
conditions. Control analyses excluding global activation magni-
tude differences between attention conditions did not change
these findings. The spatial correlation analyses also did not reveal
significant differences in correlations for any of the attention
condition pairs.

DISCUSSION

Mechanisms for selective processing of visual images based on
the relevance of their information content are crucial for goal-
directed behavior. There is an encoding advantage for selectively
attended stimuli in the context of competition, as evident in the
selectivity of subsequent learning and memory. In order to bet-
ter understand the neural mechanisms of selective information
processing, we investigated the modification of visual networks
to favor the representation of goal-relevant information dur-
ing working memory, and putative mechanisms of goal-based
guidance of the selection process involving lateral PFC.

MECHANISMS UNDERLYING TUNING OF CATEGORY-SPECIFIC
REPRESENTATIONS IN EXTRASTRIATE CORTEX

How are neural representations of visual object information mod-
ified by selective attention? Previously proposed mechanisms for
object-based attention have been based on the assumption of a
modular architecture of information processing. For example,
magnitudes of stimulus-driven activation in specific extrastriate
cortex regions that respond differentially to object categories of
perceived stimuli have been shown to be modulated by attention
(O’Craven et al., 1999; Gazzaley et al., 2005a,b). However, extend-
ing this finding to a more generalizable model of object-selective
attention is problematic. Any model of attention founded solely
on localized top-down signaling would quickly reach a road-
block in that a separate module (i.e., a separate category-selective
region) would be needed for every possible target of attention.
Such a model could not accommodate the diversity and complex-
ity of possible targets of attention. A richer code, such as might
be accommodated by a distributed coding structure, would logi-
cally be necessary to represent information to specify a diversity
of possible targets.

We examined to what extent attention modifies the informa-
tion represented in spatially distributed neural codes, and in what
ways these codes may be modified. A distributed code structure
could be measurable as a combinatorial of local activities across
space, describable as “patterns.” This should be applicable not
only at the microscopic scale (e.g., combinations of neurons), but
also a macroscopic scale (e.g., across areas of cortex, as measured
with fMRI). At this level, the effects of attention may be con-
ceptualized and operationally measured as a reconfiguration of
the codes (multi-voxel patterns) to favor representation of goal-
relevant information. First, we tested the most basic concept that
distributed neural codes are altered (tuned) based on selective
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attention to different targets during working memory. We tested
the effect of selective attention on information coded in extras-
triate activity patterns from individuals engaged in tasks with
differential information processing demands based on the rele-
vance of an object category. Three attention conditions demanded
either non-selective processing of presented stimuli, or selective
processing of one category of information over the other.

At the level of these distributed codes, mechanisms of atten-
tion need to act to select one representation over other spatially
overlapping representations. Therefore, we predicted that shift-
ing selective attention to one vs. another competing visual object
should tune activity patterns in extrastriate cortex in different
directions. This prediction was based on a conceptual model in
which neural representations of object category information are
coded in distributed extrastriate cortex patterns. Basic stimulus-
driven perception of two images of different object categories
would be encoded in distributed, overlapping representations in
extrastriate networks. The overall measurable pattern of visual
cortical activity would be a composite of the representations for
both categories. With engagement of more in-depth processing,
such as for any task that requires the image information to be
maintained during working memory, these codes would then be
tuned by the top-down direction of attention to favor representa-
tion of goal-relevant information. In this experimental protocol,
this tuning would make patterns for the opposing selective atten-
tion conditions (Attend Scenes vs. Attend Faces) more distinctive
from each other (see Figure 1). If representations of both cate-
gories were equally relevant for the task at hand, both would be
represented without a top-down bias in neural activity patterns
during working memory and subsequent processing, resulting in
an intermediate pattern. We found that brain activity patterns
during the contrasting task conditions fit these predictions. These
findings support the contention that object-based selective atten-
tion is indeed implemented as a shift in the tuning of information
represented within distributed neural codes. We then proceeded
to address follow-up questions regarding the main finding of this
tuning effect.

If any given condition was associated with a generally higher
level of activation, due to non-specific factors such as “mental
effort,” this would provide a non-specific source of information
to the pattern classifier. Therefore, we excluded the possibility
that differences in activity patterns between conditions could
be driven by simple generalized (spatially non-varying) signal
intensity differences. The core pattern of findings did not change
when global signal intensity differences between conditions were
excluded. That is, even when mean signal intensities were equiva-
lent across conditions, the main findings held. This supports our
secondary conclusion that the neural representations are coded
in spatially-varying, multi-voxel patterns. Having established this,
we could then systematically examine potential contributions to
the spatially-varying codes, such as the object category selectivity
of voxels (discussed below).

Furthermore, the findings generalized across methods of pat-
tern analysis. We performed a separate corroborative analysis
using a spatial correlations technique to determine the distinc-
tiveness of the patterns. We calculated the strength of the spatial
correlations of multi-voxel patterns representing each attention

condition. This method is sensitive primarily to changes in the
relationships between voxels in the overall pattern. That is, this
method is insensitive to differences that are only widespread
(spatially invariant) or localized but that do not change the rela-
tionships between voxels in the multi-voxel patterns. For example,
if only the most highly activated voxels by a visual task are sim-
ply more activated, then the overall spatial correlation would
not actually be altered (noting that correlations are magnitude-
independent). In other words, only changes that affect the overall
combination that comprises the topographical patterns would
affect the spatial correlation values. Consistent with the pat-
tern classifier findings, the spatial correlation data support the
conclusion that the top-down attention signals modulate spa-
tial distributed patterns of visual cortex in which information is
coded.

Could the results be specific to the pattern classification
method we utilized? We utilized a non-linear classifier in order to
avoid assuming that the distinguishing features in the multi-voxel
patterns would be linear, but it is possible that the results might
not generalize to different types of classifiers. At a general level,
it has been argued that the same conclusions would be drawn
with different classifier configurations or methods (O Toole et al.,
2007; Misaki et al., 2010), but this presumption should be tested
for any given question. Importantly, our results did generalize
across methods of pattern analysis (spatial correlations as well as
pattern classification with a non-linear classifier), arguing against
a classifier-specific result.

DOES OBJECT-BASED ATTENTION ACT ON SPATIALLY-DISTRIBUTED
CATEGORY-SPECIFIC CODES IN EXTRASTRIATE CORTEX?

We propose that attention codes are spatially distributed. One
may ask whether there is any organizational structure to these
codes, and if so, what the organizing principle might be. As
mentioned, there is no intuitively simple topographical mapping
analogous to that for spatial attention, translating between spatial
location in the environment and topography in the brain. One
possibility could be based on a hierarchy of object category selec-
tivity of various brain areas, a concept that has provided an under-
pinning for localization based approaches to object category
perception (e.g., Epstein and Kanwisher, 1998). One possibility
is that top-down signals (as specified by the attention condi-
tions) could act solely through category-selective nodes. Another
possibility is that top-down signals act on spatially-distributed,
category-specific codes. In this case, although localized atten-
tional effects would still be observed, they do not reveal the true
underlying mechanism underlying object-based attention. To rec-
oncile prior findings of modulation in localized category-selective
regions with our proposal of a spatially distributed mechanism of
attention, we systematically examined information coded in seg-
ments of extrastriate cortex, organized by the “object-selectivity”
of the stimulus-driven activation responses in each voxel. We first
investigated whether the modulatory effect of attention extends
to distributed information codes outside of “object-selective”
regions of extrastriate cortex. To determine the contributions
of face-selective (FFA) and scene-selective (PPA) regions, we
excluded these regions from the classification procedures, and
found only a small decrement in the classification of attention

Frontiers in Human Neuroscience

www.frontiersin.org

June 2012 | Volume 6 | Article 187 | 9


http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive

Chen et al.

Tuning of neural representations by attention

condition. This finding suggests that object-based attention does
not act solely on localized, category-specific regions but rather
acts on spatially-distributed category-specific codes.

Next, we examined to what extent there might be a relationship
between a topography of “category-selectivity” (based on univari-
ate response profiles) and the distributed attentional effects. We
divided extrastriate cortex voxels into “strata” of voxels based on
differential responses to viewing of faces or scenes in an inde-
pendent task. We successively excluded each stratum from clas-
sification of attention condition in order to quantify how much
information was contributed by each stratum. Classification rates
remained significantly above chance regardless of which stratum
was excluded. In other words, no particular stratum was necessary
for the attentional effects, which were distributed across extrastri-
ate cortex. In a complementary approach, we determined pattern
classification accuracy when using data limited to each specific
stratum. All strata, even those showing no selectivity for object-
category (the lowest 10% strata in the whole extrastriate cortex
mask), represented information coding the attention condition.
This finding again supports the contention that object-based
attention acts on spatially distributed category-specific codes,
not detected by univariate analyses of local regional response
changes.

Other sources of modulation, such as motivation or affect, may
also be mediated by similar mechanisms of tuning of information
codes. The proposed analytic methods could be combined with
conditions varying other sources of modulation, such as affect or
motivation, to test hypotheses regarding modulatory input from
sources involved in other forms of control.

THE NATURE OF OBJECT-BASED ATTENTIONAL SIGNALS IN

LATERAL PREFRONTAL CORTEX

If tuning of category-specific codes in extrastriate cortex is medi-
ated by top-down signals emanating from PFC, then patterns of
PEC activity should encode measurable information regarding
the different attention conditions of our task. We found this to
be the case in that information distinguishing the three attention
conditions was represented in PFC, as evident by the successful
classification of PFC activity patterns for the different conditions.
However, we sought to also determine the nature of the repre-
sentations encoded in lateral PFC supporting top-down atten-
tional signals. For example, does lateral PFC code target-specific
information (in this case, specific to object category) to guide
attention, a more abstract representation of the goal-relevance of
perceptual events, or a representation of a more general cogni-
tive state, completely abstract from the specific external targets of
attention?

If PFC codes representations for object categories (concrete,
stimulus-based properties of the visual images), then findings for
PEC activity patterns should re-capitulate those of extrastriate
cortex. This was not the case, since we found that the changes
measured in PFC regions differed from those in extrastriate cortex
(see Figure 4). There was no evidence that the opposing selective
attention demands tuned PFC patterns in opposite directions, in
contrast with the findings in extrastriate cortex. Rather, classifi-
cation rates were equivalent for the selective and non-selective
attention conditions (see Figure 4B). At the other extreme, if PEC

codes represent something as abstract as a general cognitive state
(with no information specifying the direction of selective atten-
tion), then the brain activity patterns in the different selective
attention conditions should not be distinguishable at all. Again,
this was not the case since we found that information distinguish-
ing the attention conditions was represented in PFC. Our findings
do suggest that lateral PFC codes representations of information
that are more abstract than the concrete stimulus property of
object category, but less abstract than some form of general cog-
nitive state. This finding is consistent with the possibility that PFC
codes represent the goal-relevance of perceptual events which
could provide guidance for the selective processing of visual infor-
mation. This is consistent with the conception that PFC is part of
a system that adapts to represent currently relevant information
(Hampshire et al., 2007).

CONCLUSIONS

This study examined mechanisms of selective attention of rep-
resentations of object categories that are coded in extrastriate
cortex in widely distributed and spatially overlapping represen-
tations. Our findings support the hypothesis that extrastriate
cortex networks are tuned by attention to favor representation
of relevant targets, at the population level (at the macroscopic
scale measured with fMRI). Where information is coded in
combinatorials within the same finite set of nodes (voxels or
otherwise), attention may re-configure these combinatorials to
tune the codes to better represent goal-relevant information.
This provides a mechanism by which top-down signals may
bias the competition that occurs when overlapping codes com-
pete to represent different information within finite networks.
This study adds to other studies that have examined mecha-
nisms of attention at the level of distributed codes. For exam-
ple, attention to lower-level visual features has been shown to
propagate outside of attended spatial locations (Serences and
Boynton, 2007), consistent with attention signals being feature-
specific but broadly spatially distributed (Serences et al., 2009).
Mental imagery likely relies on attentional top-down signals and
also appears to be mediated through spatially distributed codes
(Stokes et al., 2009). Electrophysiologic methods will be nec-
essary to disentangle different types of attentional mechanisms
(e.g., gain vs. tuning) at the neuronal level. For example David
et al. showed that feature-based attention does alter neuronal
tuning in V4, although spatial attention only alters gain (David
et al., 2008). Object-based attention is likely to share mechanisms
with other forms of feature-based attention, though object pro-
cessing requires the integration of multiple features. Our study
provides support for the logic that attention would need to tune
representations in complex codes to favor goal-relevant object
information.
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